วันพฤหัสบดีที่ 30 กรกฎาคม พ.ศ. 2552

Chipset

Chipset



Chipset คืออะไร และมีความสำคัญอย่างไร
ปัจจุบันเป็นที่ยอมรับกันทั่วไปแล้วว่า เรากำลังก้าวสู่ยุคใหม่ เรียกว่า ยุคของข้อมูลข่าวสาร ไม่ว่าจะเป็นประเทศที่เจริญแล้ว หรือประเทศที่กำลังพัฒนา ไม่ว่าจะเป็นผู้นำในด้านการเมืองหรือผู้ดำเนินงานด้านเศรษฐกิจสังคม ไม่ว่าจะเป็นนักบริหารอาวุโส หรือหัวหน้าแผนกงานขนาดเล็กวงการสังคมของเราทุกวันนี้ถือได้ว่าเป็นสังคมแห่งข่าวสารข้อมูล และนับวันก็จะมีแนวโน้มไปในทางนี้มากขึ้น

หากจะกล่าวถึงเครื่องมือที่ช่วยในการเข้าถึงข้อมูลที่แพร่หลายมากที่สุดคงหนีไม่พ้น เครื่องคอมพิวเตอร์ ทั้ง PC และ Notebook การที่จะได้คอมพิวเตอร์ที่มีประสิทธิภาพสูง ไม่ได้หมายความว่าต้องเป็นคอมพิวเตอร์ที่ใช้ซีพียูความเร็วสูงเท่านั้น แต่ เทคโนโลยีและส่วนประกอบ อื่นๆด้วย ดังนั้น เทคโนโลยีที่จะใช้ต้องมีประสิทธิภาพสูง และสามารถรองรับความสามารถของซีพียูนั้นๆได้ ซึ่งส่วนที่จะทำหน้าที่เชื่อมเทคโนโลยีเหล่านั้นเข้าด้วยกันให้คอมพิวเตอร์สามารถใช้ประโยชน์จากเทคโนโลยีเหล่านั้น นั่นคือ Chipset ซึ่งทำหน้าที่เชื่อมประสานส่วนต่างๆของเทคโนโลยีในเมนบอร์ดเข้าด้วยกัน
ความหมายของ Chipset Chip Set

เป็นคำผสมระหว่าง Chip และ Set ดังนี้

• Chip คือ อุปกรณ์ไฟฟ้าอิเล็คทรอนิกส์ ที่มีลักษณะทางกายภาพเป็นวัตถุรูปร่างสี่เหลี่ยม มีขาโลหะ ที่เป็นระยางออกมารอบๆ ตัว จำนวนขาโลหะที่ยื่นออกมาก็ขึ้นอยู่กับความซับซ้อนในการออกแบบ และ หน้าที่ที่ถูกกำหนดในการใช้งาน

• Set หมายถึง กลุ่ม, หมวดหมู่, หรือสิ่งที่จัดมารวมกัน ดังนั้น ความหมายโดยรวมของ Chipset คือ กลุ่มของชิ้นส่วนอิเล็กทรอกนิกส์ที่ได้รับการออกแบบให้ทำงานเป็นหน่วย สำหรับควบคุมการทำงานต่างๆ ของเมนบอร์ด ซึ่งเปรียบเสมือนเป็นผู้จัดการของซีพียูและเป็นหัวใจในการควบคุมการทำงานของอุปกรณ์ทั้งหมดบน Mainboard พร้อมทั้งเป็นจุดศูนย์รวมของเทคโนโลยีอันทันสมัยทั้งหลาย หรือให้คำนิยามได้ดังนี้ “Chipset is Heart of the Mainboard”

หลักการทำงานและโครงสร้างของ Chipset

หลักการทำงานของ Chipset

โดยทั่วไป ชุดChipset จะประกอบด้วย Chip มากกว่า 1 Chip และ chipset แต่ละตัวจะมี transistor มากกว่า 1 ล้านตัว ซึ่งมีหลากหลายหน้าที่ โดยสรุปได้ดังนี้

1. หลักการทำงานหลักของ Chipset คือควบคุมการทำงานและการเชื่อมต่อของการรับส่งข้อมูลระหว่างหน่วยความจำหลัก หรือ อุปกรณ์รับเข้า-ส่งออก (input/output device) หรือ อุปกรณ์ต่อพ่วงต่าง ๆ

2. ทำหน้าที่ควบคุมและเป็นทางผ่านของข้อมูลจากอุปกรณ์ต่าง ๆทุกอย่างที่ซีพียูไม่ได้ทำ เช่น การส่งข้อมูลจากหน่วยความจำหลักไปยังซีพียู การส่งผ่านข้อมูลจากฮาร์ดดิสก์ จากไดรฟ์ซีดีรอม รวมถึงการส่งข้อมูลของแผงวงจร (Card) ต่าง ๆ

3. ทำหน้าที่เป็นตัวกำหนดจัดการไม่ว่าจะเป็นเรื่องของการกำหนดความถี่ ให้แก่บัสทั้งระบบ หรือจะเป็นการจำกัดสิทธิในการให้ใช้ ซีพียู กำหนดให้เมนบอร์ดนั้นต้องมี Slot แบบใดบ้าง

4. สนับสนุนการทำงานของ Processor หลายตัว (Multi Processor) โดยที่วงจรควบคุมของ Chip Set จะทำหน้าที่ประสานงานการทำงานของ Processor ทั้งสอง ไม่ให้แต่ละ Processor รบกวนการทำงานของกันและกัน โดยทำงานร่วมกับระบบปฏิบัติการโดยเรียกการทำงานในลักษณะนี้เรียกว่า SMP ( Symmetric Multiprocessing )

โครงสร้างของ Chipset

โดยปกติอุปกรณ์ต่างๆ และส่วนประกอบของเมนบอร์ด มักจะทำงานร่วมกันในลักษณะที่เรียกว่า "สอดประสานไปด้วยกัน (Synchronous)" โดยใช้ความถี่สัญญาณนาฬิกาเป็นหลัก และบนเมนบอร์ดจะมีอุปกรณ์อิเล็กทรอนิกส์ส่วนหนึ่งที่คอยทำหน้าที่ให้กำเนิดสัญญาณนาฬิกา ชิปเซตจะทำหน้าที่ช่วยจัดการ ในการทำงานของอุปกรณ์ต่างๆ ที่ต่อพ่วงกับเมนบอร์ด โดยแบ่งออกเป็น 2 โครงสร้าง คือ

1.โครงสร้าง North Bridge และ South Bridge

2.โครงสร้าง Accelerated Hub Architecture

หน้าที่ของ Chipset ในส่วนของโครงสร้าง North Bridge


Chipset ที่ทำหน้าที่ในฝั่ง North Bridge คือ จะทำการควบคุมอุปกรณ์ RAM และ AGP ทำการเชื่อมต่อโดยตรงกับ CPU และ VGA Card หรือ AGP Card หน่วยความจำหลัก และหน่วยความจำแคช (Static RAM) และ Slot สำหรับต่ออุปกรณ์ต่างๆ ที่ต่อผ่าน PCI Bus ทั้งหมด ซึ่งถูกควบคุมผ่านสะพานทิศเหนือ จะเห็นว่า Chipset ในฝั่ง North Bridge เป็นอุปกรณ์หลัก ที่ทำหน้าที่ควบคุมของคอมพิวเตอร์


หน้าที่ของ Chipset ในส่วนของโครงสร้าง Southern Bridge


หน้าที่อื่นๆ ที่เหลือของ Chipset เป็นงานของ Southern Bridge ได้แก่ การควบคุมอุปกรณ์ต่อพ่วง (Peripheral Devices) Hard disk, CD-ROM Drive , Slot IDE, USB, ACPI Controller และ Flash BIOS รวมทั้งควบคุมการทำงานของอุปกรณ์ที่ต่อเชื่อมกับ ISA Bus ด้วย หน้าที่เพิ่มอีกอย่างหนึ่งของ Southern Bridge คือเป็นตัวควบคุม Power Management Controllers






หน้าที่ของ Chipset ในส่วนของโครงสร้าง Accelerated Hub Architecture

หน้าที่ของชิปเซ็ตแบบ Accelerated Hub Architecture (AHA)คือเป็นสถาปัตยกรรมที่ผนวกตัวประมวลผลภาพและเสียงเข้าด้วยกัน รวมทั้งการแบ่งหน่วยความจำของระบบแบ่งปันไปให้ชิปประมวลผลกราฟิกใช้ ซึ่งจะมีโครงสร้างที่ คล้ายกับแบบ North Bridge , South Bridge แต่จะมี Firmware Hub ที่เป็นส่วน ที่ใช้เป็นระบบรักษาความปลอดภัย(Security) ให้แก่เครื่องคอมพิวเตอร์เพิ่มเข้ามาด้วย ชิปเซ็ตที่มีโครงสร้างแบบนี้จะมีระบบบัสแบบ PCI ที่เชื่อมต่อระหว่าง Graphics กับ I/O Controller นั้น ที่มีความกว้างของบัส 32 บิต ความเร็ว 66 MHz ทำให้มีความสามารถในการถ่ายโอนข้อมูลระหว่างกันถึง 264 MB./Sec ซึ่งถือว่าเร็วกว่าแบบ North Bridge , South Bridge ในปัจจุบันผุ้ผลิตส่วนใหย่นิยมออกแบบ Chipset ด้วยโครงสร้างของ AHA มากขึ้น เนื่องจาก AHA ช่วยลดปัญหาคอขวดของ PCI และเพิ่ม bandwidth ในการส่งข้อมูลเพิ่มขึ้นเท่าตัว และ เพิ่มขีดความสามารถในการโต้ตอบข้อมูลได้เร็วยิ่งขึ้น จะมี Chip หลักคือ GMCH : Graphic & Memory Controller Hub, ICH : I/O Controller Hub และ FWH : Firmware Hub

วันพฤหัสบดีที่ 23 กรกฎาคม พ.ศ. 2552

Mainboard

Mainboard ( แผงวงจรหลัก )


เมนบอร์ดเป็นอุปกรณ์ที่สำคัญรองมาจากซีพียู เมนบอร์ดทำหน้าที่ควบคุม ดูแลและจัดการๆ ทำงานของ อุปกรณ์ชนิดต่างๆ แทบทั้งหมดในเครื่องคอมพิวเตอร์ ตั้งแต่ซีพียู ไปจนถึงหน่วยความจำแคช หน่วยความจำหลัก ฮาร์ดดิกส์ ระบบบัส บนเมนบอร์ดประกอบด้วยชิ้นส่วนต่างๆ มากมายแต่ส่วนสำคัญๆ ประกอบด้วย

1. ชุดชิพเซ็ต
ชุดชิพเซ็ตเป็นเสมือนหัวใจของเมนบอร์ดอีกที่หนึ่ง เนื่องจากอุปกรณ์ตัวนี้จะมีหน้าที่หลักเป็นเหมือนทั้ง อุปกรณ์ แปลภาษา ให้อุปกรณ์ต่างๆ ที่อยู่บนเมนบอร์ดสามารถทำงานร่วมกันได้ และทำหน้าที่ควบคุม อุปกรณ์ต่างๆ ให้ทำงานได้ตามต้องการ โดยชิพเซ็ตนั้นจะประกอบด้วยชิพเซ็ตนั้นจะประกอบไปด้วยชิพ 2 ตัว คือชิพ System Controller และชิพ PCI to ISA Bridge

ชิพ System Controller หรือ AGPSET หรือ North Bridge เป็นชิพที่ทำหน้าที่ควบคุมการทำงานของ อุปกรณ์หลักๆ ความเร็วสูงชนิดต่างๆ บนเมนบอร์ดที่ประกอบด้วยซีพียู หน่วยความจำแคชระดับสอง (SRAM) หน่วยความจำหลัก (DRAM) ระบบกราฟิกบัสแบบ AGP และระบบบัสแบบ PCI

ชิพ PCI to ISA Bridge หรือ South Bridge จะทำหน้าที่เป็นอุปกรณ์ที่ใช้เชื่อมต่อกันระหว่างระบบบัสแบบ PCI กับอุปกรณ์อื่นๆ ที่มีความเร็วในการทำงานต่ำกว่าเช่นระบบบัสแบบ ISA ระบบบัสอนุกรมแบบ USB ชิพคอนโทรลเลอร์ IDE ชิพหน่วยความจำรอมไออส ฟล็อบปี้ดิกส์ คีย์บอร์ด พอร์ตอนุกรม และพอร์ตขนาน

ชุดชิพเซ็ตจะมีอยู่ด้วยกันหลายรุ่นหลายยี่ห้อโดยลักษณะการใช้งานจะขึ้นอยู่กับซีพียูที่ใชเป็นหลัก เช่นชุด ชิพเซ็ตตระกูล 430 ของอินเทลเช่นชิพเซ็ต 430FX, 430HX 430VX และ 430TX จะใช้งานร่วมกับซีพียู ตระกูลเพนเทียม เพนเที่ยม MMX, K5, K6, 6x86L, 6x86MX (M II) และ IDT Winchip C6 ชุดชิพเซ็ต ตระกูล 440 ของอิเทลเช่นชิพเซ็ต 440FX, 440LX, 440EX และชิพเซ็ต 440BX จะใช้งานร่วมกับ ซีพียูตระกูลเพนเที่ยมโปร เพนเที่ยมทู และเซลเลอรอน และชุดชิพเซ็ตตระกูล 450 ของอินเทลเช่นชุดชิพเซ็ต 450GX และ 450NX ก็จะใช้งานร่วมกับซีพียูตระกูลเพนเที่ยมทูซีนอนสำหรับเครื่องคอมพิวเตอร์ระดับ Server หรือ Workstation นอกจากนี้ยังมีชิพเซ็ตจากบริษัทอื่นๆ อีกหลายรุ่นหลายยี่ห้อที่ถูกผลิตออกมา แข่งกับอินเทลเช่นชุดชิพเซ็ต Apollo VP2, Apollo VP3 และ Apollo mVp3 ของ VIA, ชุดชิพเซ็ต Aladin IV+ และ Aladin V ของ ALi และชุดชิพเซ็ต 5597/98, 5581/82 และ 5591/92 ของ SiS สำหรับซีพียูตระกูลเพนเที่ยม เพนเที่ยม MMX, K5, K6, 6x86L, 6x86MX (M II) และ IDT Winchip C6 ชุดชิพเซ็ต Apollo BX และ Apollo Pro ของ VIA, ชุดชิพเซ็ต Aladin Pro II M1621/M1543C ของ ALi และชุดชิพเซ้ต 5601 ของ Sis สำหรับซีพียูตระกูลเพนเที่ยมทู และเซลเลอรอน ซึ่งชิพเซ้ตแต่ละรุ่น แต่ละยี้ห้อนั้นจะมีจุดดีจุดด้อยแตกต่างกันไป


2. หน่วยความจำรอมไบออส และแบตเตอรรี่แบ็คอัพ
ไบออส BIOS (Basic Input Output System) หรืออาจเรียกว่าซีมอส (CMOS) เป็นชิพหน่วยความจำชนิด หนึ่งที่ใช้สำหรับเก็บข้อมูล และโปรแกรมขนาดเล็กที่จำเป็นต่อการบูตของระบบคอมพิวเตอร์ โดยในอดีต ส่วนของชิพรอมไบออสจะประกอบด้วย 2 ส่วนคือ ชิพไบออส และชิพซีมอส ซึ่งชิพซีไปออสจะทำหน้าที่ เก็บข้อมูลพื้นฐานที่จำเป็นต่อการบูตของระบบคอมพิวเตอร์ ส่วนชิพซีมอสจะทำหน้าที่ เก็บโปรแกรมขนาดเล็ก ที่ใช้ในการบูตระบบ และสามารถเปลี่ยนข้อมูลบางส่วนภายในชิพได้ ชิพไบออสใช้พื้นฐานเทคโนโลยีของรอม ส่วนชิพซีมอสจะใช้เทคโนโลยีของแรม ดังนั้นชิพไบออสจึงไม่จำเป็นต้องใช้พลังงานไฟฟ้า ในการเก็บรักษาข้อมูล แต่ชิพซีมอส จะต้องการพลังงานไฟฟ้าในการเก็บรักษาข้อมูลอยตลอดเวลาซึ่งพลังงานไฟฟ้า ก็จะมาจากแบตเตอรี่แบ็คอัพที่อยู่บนเมนบอร์ด (แบตเตอรี่แบ็คอัพจะมีลักษณะเป็นกระป๋องสีฟ้า หรือเป็นลักษณะกลมแบนสีเงิน ซึ่งภายในจะบรรจุแบตเตอรรี่แบบลิเธี่ยมขนาด 3 โวลต์ไว้) แต่ตอ่มาในสมัย ซีพียตระกูล 80386 จึงได้มีการรวมชิพทั้งสองเข้าด้วยกัน และเรียกชื่อว่าชิพรอมไบออสเพียงอย่างเดียว และการที่ชิพรอมไบออสเป็นการรวมกันของชิพไบออส และชิพซีมอสจึงทำให้ข้อมูลบางส่วนที่อยู่ภายใน ชิพรอมไบออส ต้องการพลังงานไฟฟ้าเพื่อรักษาข้อมูลไว้ แบตเตอรี่แบ็คอัพ จึงยังคงเป็นสิ่งจำเป็นอยู่จนถึง ปัจจุบัน จึงเห็นได้ว่าเมื่อแบตเตอรี่แบ็คอัพเสื่อม หรือหมดอายุแล้วจะทำให้ข้อมูลที่คุณเซ็ตไว้ เช่น วันที่ จะหายไปกลายเป็นค่าพื้นฐานจากโรงงาน และก็ต้องทำการเซ้ตใหม่ทุกครั้งที่เปิดเครื่อง เทคโนโลยีรอมไบออส ในอดีต หน่วยความจำรอมชนิดนี้จะเป็นแบบ EPROM (Electrical Programmable Read Only Memory) ซึ่งเป็นชิพหน่วยความจำรอม ที่สามารถบันทึกได้ โดยใช้แรงดันกระแสไฟฟ้าระดับพิเศษ ด้วยอุปกรณ์ ที่เรียกว่า Burst Rom และสามาถลบข้อมูลได้ด้วยแสงอุตราไวโอเล็ต ซึ่งคุณไม่สามารถอัพเกรดข้อมูลลงในไบออสได้ ด้วยตัวเองจึงไม่ค่อยสะดวกต่อการแก้ไขหรืออัพเกรดข้อมูลที่อยู่ในชิพรอมไบออส แต่ต่อมาได้มีการพัฒนา เทคโนโลยชิพรอมขึ้นมาใหม่ ให้เป็นแบบ EEPROM หรือ E2PROM โดยคุณจะสามารถทั้งเขียน และลบข้อมูล ได้ด้วยกระแสไฟฟ้าโดยใช้ซอฟต์แวร์พิเศษ ได้ด้วยตัวเองอย่างง่ายดายดังเช่นที่เราเห็นกันอยู่ในปัจจุบัน


3. หน่วยความจำแคชระดับสอง
หน่วยความจำแคชระดับสองนั้นเป็นอุปกรณ์ ตัวหนึ่งที่ทำหน้าเป็นเสมือนหน่วยความจำ บัฟเฟอร์ให้กับซีพียู โดยใช้หลักการที่ว่า การทำงานร่วมกับอุปกร์ที่ความเร็วสูงกว่า จะทำให้เสียเวลาไปกับการรอคอยให้อุปกรณ์ ที่มีความเร็วต่ำ ทำงานจนเสร็จสิ้นลง เพราะซีพียูมีความเร็วในการทำงานสูงมาก การที่ซีพียูต้องการข้อมูล ซักชุดหนึ่งเพื่อนำไปประมวลผลถ้าไม่มีหน่วยความจำแคช

RAM ( Random Access Memory )

Random Access Memory







ประวัติและความหมาย

แรม ( RAM ย่อมาจากคำว่า Random Access Memory ) เป็นหน่วยความจำหลักประเภทไม่ถาวร คือ สามารถบันทึกคำสั่งและข้อมูลไปเก็บไว้ในแรมได้ แต่หากไฟฟ้าดับหรือกระพริบ คำสั่งและข้อมูลที่เก็บไว้นั้นจะหายไปในทันที หน่วยความจำชนิดนี้ใช้สำหรับทำงานโดยทั่วไป จึงต้องมีขนาดใหญ่มากพอ ถ้าเป็นเครื่องมินิคอมพิวเตอร์หน่วยความจำแรมอาจจะต้องมีขนาดใหญ่มากถึงขนาด 32 เมกะไบต์ เครื่องไมโครคอมพิวเตอร์ในปัจจุบันต้องมีขนาด 4 เมกะไบต์เป็นอย่างต่ำ
หลักการทำงานหน่วยความจำ(แรม) ทำหน้าที่เก็บชุดคำสั่งและข้อมูลที่ระบบคอมพิวเตอร์กำลังทำงานอยู่ไม่ว่าจะเป็นการนำเข้าข้อมูล ( Input ) หรือ การนำออกข้อมูล ( Output ) โดยเนื้อที่ของหน่วยความจำหลักแบบแรมนี้ได้ถูกแบ่งออกเป็น 4 ส่วน คือ

1. Input Storage Area เป็นส่วนที่เก็บข้อมูลนำเข้าที่ได้รับมาจากหน่วยรับข้อมูลเข้า เช่น ข้อมูลที่ได้มาจากคีย์บอร์ด เป็นต้น โดยข้อมูลนี้จะถูกนำไปใช้ในการประมวลผลต่อไป

2. Working Storage Area เป็นส่วนที่เก็บข้อมูลที่อยู่ในระหว่างการประมวลผล

3. Output Storage Area เป็นส่วนที่เก็บผลลัพธ์ที่ได้จากการประมวลผล ตามความต้องการของผู้ใช้ เพื่อรอที่จะถูกส่งไปแสดงออกยังหน่วยแสดงผลอื่นที่ผู้ใช้ต้องการ เช่นจอภาพ เป็นต้น

4. Program Storage Area เป็นส่วนที่ใช้เก็บชุดคำสั่ง หรือโปรแกรมที่ผู้ใช้ต้องการจะส่งเข้ามา เพื่อใช้คอมพิวเตอร์ปฏิบัติตามคำสั่ง ชุดดังกล่าว หน่วยควบคุมจะทำหน้าที่ดึงคำสั่งจากส่วนนี้ทีละคำสั่งเพื่อทำการแปลความหมาย ว่าคำสั่งนั้นสั่งให้ทำอะไร จากนั้นหน่วยควบคุม จะไปควบคุมฮาร์ดแวร์ที่ต้องการทำงานดังกล่าวให้ทำงานตามคำสั่งนั้น ๆหน่วยความจำจะจัดอยู่ในลักษณะแถวแนวตั้ง ( CAS : Column Address Strobe ) และแถวแนวนอน ( RAS : Row Address Strobe ) เป็นโครงสร้างแบบเมทริกซ์ ( Matrix ) โดยจะมีวงจรควบคุมซึ่งเป็นส่วนหนึ่งของวงจรในชิปเซต ( Chipset ) ควบคุมอยู่ โดยวงจรเหล่านี้จะส่งสัญญาณกำหนดแถวแนวตั้ง และสัญญาณแถวแนวนอนไปยังหน่วยความจำ เพื่อกำหนดตำแหน่งของข้อมูลในหน่วยความจำที่จะใช้งาน

ในการเข้าถึงข้อมูลในหน่วยความจำของซีพียู สิ่งแรกที่ซีพียูได้รับในการเข้าถึงข้อมูล ก็คือ ซีพียูจะได้รับสัญญาณ RAS แล้วหลังจากนั้นซีพียูจะต้องใช้เวลาสักครู่เพื่อรอรับสัญญาณ CAS ซึ่งช่วงนี้ได้ถูกเรียกว่า RAS to CAS Delay จะใช้เวลาประมาณ 2-3 สัญญาณนาฬิกา และในไบออส ( BIOS ) จะเปิดโอกาสให้ผู้ใช้สามารถปรับค่านี้ได้ เช่น ปรับจาก 3 สัญญาณนาฬิกา ให้เหลือ 2 สัญญาณนาฬิกาซึ่งจะทำให้การเข้าถึงข้อมูลในหน่วยความจำเร็วขึ้นแต่มีโอกาสเกิดความผิดพลาดได้สูง โดยสัญญาณทั้ง 2 แบบนี้จะเป็นเหมือนที่อยู่หรือตำแหน่งเก็บข้อมูลที่ทำให้ซีพียูสามารถค้นหาข้อมูลในหน่วยความจำได้อย่างถูกต้องในการคิดความเร็วของแรม ที่ตัว Memorychipจะมี เลขรหัส เช่น HM411000-70 ตัวเลขหลัง (-) คือ ตัวเลขที่บอก ความเร็วของ RAM ตัวเลขนี้ เรียกว่า Accesstime คือ เวลาที่เสียไป ในการที่จะเข้าถึงข้อมูล หรือ เวลาที่แสดงว่า ข้อมูลจะถูก ส่งออกไปทาง Data busได้เร็วแค่ไหน ยิ่ง Access time น้อยๆ แสดงว่า RAM ตัวนั้นเร็วมาก




ความเร็วของแรมนั้นเรียกว่า Cycle time ซึ่งมีหน่วยเป็น ns โดย Cycle time เท่ากับ Read/Write cycle time (เวลาที่ในการส่งสัญญาณติดต่อ ว่าจะอ่าน/เขียน RAM) รวมกับ Access time และ Refresh time โดยทั่วไป RAM จะต้องทำการตอบสนองซีพียู ได้ในเวลา 2 clock cycle หรือ 2 คาบ หากแรมตอบสนองไม่ทันแรมจะส่งสัญญาณ /WAIT บอกซีพียูให้คอย คือ การที่ซีพียูเพิ่ม clock cycle ซึ่งช่วงเวลานี้เรียกว่า WAIT STATE และในส่วนของการเรียกใช้งานหน่วยความจำนั้น แบ่งออกเป็น 2 ลักษณะคือ ลักษณะแรกเป็นแบบ Asynchronous เป็นหน่วยความจำที่ไม่ทำงานที่ความเร็วเดียวกับสัญญาณนาฬิกา ซึ่งจะพบได้ในหน่วยความจำ FPM และ EDO รุ่นเก่า ซึ่งใช้ชิปหน่วยความจำที่สามารถทำงานได้ที่ความเร็วเดียวกันกับความเร็วบัสส่วนลักษณะที่สองเป็นแบบ Synchronous เป็นหน่วยความจำที่ทำงานที่ความเร็วเดียวกับสัญญาณนาฬิกาของเครื่องคอมพิวเตอร์ พบได้ใน SDRAM ซึ่งสามารถทำงานได้ที่ความเร็วเดียวกันกับความเร็วบัส






ประเภทของแรม


1. Static Random Access Memory ( SRAM )


SRAM แบบสแตติกหรือเรียกสั้น ๆ ว่า SRAM เป็นหน่วยความจำที่ทำงานได้เร็วกว่าแบบ DRAM และไม่ต้องการวงจรไฟฟ้าสำหรับการ Refresh ข้อมูลที่เก็บไว้ภายในหน่วยความจำ ในขณะที่หน่วยความจำแบบ DRAM นั้นต้องการวงจร Refresh แต่เนื่องจากหน่วยความจำแบบ SRAM นั้นมีราคาแพง ทำให้ผู้ผลิตไม่ได้ใช้ SRAM มาทำเป็นหน่วยความจำมาตรฐานของเครื่องคอมพิวเตอร์พีซี การใช้งานส่วนใหญ่ของหน่วยความจำประเภทนี้จะถูกจำกัดไว้เฉพาะการเป็นหน่วยความจำแคช ( Cache ) ซึ่งมีขนาดเพียงเล็กน้อยเมื่อเทียบกับหน่วยความจำทั้งหมดที่ติดตั้งอยู่ในเครื่องคอมพิวเตอร์


2. Dynamic Random Access Memory ( DRAM )

DRAM แบบไดนามิกหรือเรียกสั้น ๆ ว่า DRAM เป็นหน่วยความจำที่ถูกนำมาใช้ผลิตแรมเพื่อใช้ติดตั้งลงในเครื่องคอมพิวเตอร์ ซึ่งหน่วยความจำนี้ได้รับความนิยมสูง อันเนื่องมาจากมีความจุสูง กินไฟน้อยและราคาถูกกว่าหน่วยความจำ SRAM แต่ข้อเสียก็คือมีความยุ่งยากในการออกแบบเพื่อการนำไปใช้งาน เนื่องจาก DRAM จะทำการเก็บข้อมูลไว้ในตัวเก็บประจุ (Capaciter) ซึ่งจำเป็นจะต้องมีการ refresh ข้อมูลอยู่ตลอดตามระยะเวลาที่กำหนดไว้เพื่อเก็บข้อมูลให้คงอยู่ไม่ให้ข้อมูลสูญหายไปและเป็นการเติมไฟฟ้าเข้าไปเพื่อให้ข้อมูลที่กำลังจางหายไปมีความเข้มขึ้น โดยการ refresh นี้ทำให้เกิดช่วงเวลาขึ้นในการเข้าถึงข้อมูล และที่ต้อง refresh ตัวเองอยู่ตลอดเวลาจึงเป็นเหตุให้ได้ชื่อว่า Dynamic Random Access Memory




วิธีการเลือกซื้อแรม

การเลือกซื้อ RAM สำหรับคอมพิวเตอร์ สำหรับ RAM ควรเลือกซื้อยี่ห้อที่น่าเชื่อถือได้ ขนาดของ RAM ที่จะใช้สำหรับการใช้งานคอมพิวเตอร์แบบทั่ว ๆ ไปกับ Windows 98 ควรที่จะมี RAM ประมาณ 64M. ไม่แนะนำให้ใช้ RAM น้อยกว่านี้ ถึงแม้ว่าจะสามารถใช้งานได้ก็ตาม เพราะว่าการที่ใช้ RAM น้อย ๆ จะทำให้ ฮาร์ดดิสก์ ต้องทำงานหนักขึ้นอีกมาก ซึ่งเป็นสาเหตุหลักที่ทำให้ ฮาร์ดดิสก์เสียได้เร็วกว่าอายุการใช้งานจริง หากต้องการเน้นการเล่นเกมส์ หรือการใช้งานหนัก ๆ ควรจะมี RAM ไม่น้อยกว่า 128M. สำหรับการ Upgrade เครื่อง

การเพิ่ม RAM จะเป็นทางเลือกที่ประหยัดที่สุด แต่ต้องพิจารณาดูว่า RAM ที่มีอยู่เดิมเป็นแบบไหน EDO-RAM 72 pin หรือ SD-RAM 168 pin รวมทั้งเมนบอร์ดเดิมสามารถใส่ RAM แบบใดได้ หลักการเพิ่มและเลือกซื้อ RAM มีดังนี้ คือ ขนาดของ RAM ต่อ 1 ชิ้น ซึ่งบนเมนบอร์ดจะมีข้อจำกัดของช่องใส่ RAM เช่นใส่ได้ 3 หรือ 4 ช่อง หากเลือก RAM ที่มีขนาดน้อย ๆ ต่อชิ้น เช่นเลือก RAM แถวละ 32M. จำเป็นต้องซื้อ 2 แถวเพื่อให้ได้ 64M. ในอนาคตหากต้องการเพิ่มแรมอีก ก็จะเป็นปัญหาเพราะว่าไม่มีช่องใส่ RAM การใช้ RAM ที่มีขนาด และความเร็วที่ไม่เท่ากัน ก็อาจจะเป็นปัญหาให้กับระบบคอมพิวเตอร์ได้ เช่น การไม่เสถียร หรือเครื่องขัดข้องบ่อย ๆ ได้

ดังนั้น ถ้าเป็นการซื้อ RAM ใหม่ให้เลือกขนาดที่ใหญ่ที่สุด เช่น 64M. หรือ 128M. ต่อ 1 แถว และใส่ให้น้อยแถวที่สุดเท่าที่จะเป็นไปได้ ความเร็วของบัสแรม ก็ต้องเลือกให้เข้ากับ CPU และ เมนบอร์ด (ความเร็วส่วนใหญ่จะเป็น 66, 100 และ 133 MHz) เช่น Celeron ใช้ความถี่ FSB 66 MHz อาจจะใช้งานกับ RAM แบบ PC-66 ก็ได้ แต่หากใช้ CPU Pentium II หรือ Pentium III ซึ่งใช้ความเร็ว FSB 100MHz ก็ต้องใช้ RAM แบบ PC-100 ด้วยหรือ CPU รุ่นใหม่ ๆ ที่ใช้ความเร็วบัส FSB 133 MHz ก็ต้องใช้แรมแบบ PC-133 ความเร็วของการส่งถ่ายข้อมูลของ RAM ไม่ชัดเจน

แต่โดยทั่วไปก็จะมีตัวเลขที่บอกความเร็วของการเข้าถึงข้อมูล เช่น 10 nsec, 8nsec หรือ 6 nsec เป็นต้น ตัวเลขยิ่งน้อย ก็ทำให้การเข้าถึงข้อมูลทำได้เร็วกว่า สำหรับการ Over Clock ก็คงต้องเลือกยี่ห้อของ RAM เช่น RAM แบบ PC-133 บางยี่ห้อสามารถทำงานที่ความเร็วสูงถึง 180 MHz ได้ แต่ราคาสูง)

วันพฤหัสบดีที่ 2 กรกฎาคม พ.ศ. 2552

CPU ( Central Processing Unit )

Central Processing Unit




CPU หรือ Central Processing Unit เป็นหัวใจหลักในการประมวลของคอมพิวเตอร์ โดยพื้นฐานแล้วซีพียูทำหน้าที่ประมวลผลข้อมูลเชิงคณิตศาสตร์และข้อมูลเชิงตรรกะเท่านั้น แต่ทำไมการคำนวณขนาดนี้ ต้องมีการพัฒนาซีพียูกันไม่หยุดหย่อน ย้อนกลับไปปี 1946 คอมพิวเตอร์ยุคแรกที่มีชื่อที่พอจะจำได้ก็คือ ENIVAC นั้นทำงานโดยใช้หลอดไดโอด ซึ่งสถานะการทำงานของหลอดพวกนี้ มีสองอย่าง คือ 1 กับ 0 จะมีค่าเป็น 1 เมื่อมีกระแสไหลผ่านและเป็น 0 เมื่อไม่มีกระแสไหลผ่าน นั่นจึงเป็นเหตุผลให้คอมพิวเตอร์ใช้เลขฐาน 2 ในการคำนวณ ครั้นต่อมาวิทยาการก้าวหน้าขึ้นเรื่อยๆ จากหลอดไดโอดก็พัฒนาเป็นทรานซิสเตอร์ และจากทรานซิสเตอร์ก็พัฒนาเป็นวงจรขนาดเล็ก ซึ่งรู้จักกันในชื่อของ IC และในที่สุดก็พัฒนาเป็น Chip อย่างที่เรารู้จักกันมาจนปัจจุบันนี้

สิ่งที่ผู้ผลิตซีพียูพยายามเพิ่มก็คือ ประสิทธิภาพในการประมวลผลของซีพียู เมื่อกล่าวถึงซีพียูและการประมวลผล สิ่งหนึ่งที่เราต้องเข้าใจคือภายในซีพียูไม่มีหน่วยเก็บข้อมูลสำหรับเก็บข้อมูลปริมาณมากๆ และซีพียูในยุคแรกๆ ก็ไม่มี Cache ด้วยซ้ำไป ปัจจัยที่มีผลต่อความเร็วของซีพียูก็คือ ความเร็วในการประมวลผลและความเร็วในการโอนย้ายข้อมูล ซีพียูในยุคแรกๆ นั้นประมวลผลด้วยความเร็ว 4.77 MHz และมีบัสซีพียู (CPU BUS) ความกว้าง 8 บิต เรียกกันว่าซีพียู 8 บิต (Intel 8080 8088) นั้นก็คือซีพียูเคลื่อนย้ายข้อมูลครั้งละ 1 ไบต์ ยุคต่อมาเป็นซีพียู 16 บิต 32 บิต และ 64 บิต ปัจจุบันโดยเฉพาะซีพียูรุ่นใหม่ๆ เคลื่อนย้ายข้อมูลครั้งละ 128 บิต ในการเคลื่อนย้ายข้อมูลนั้น เกิดขึ้นจากการควบคุมสัญญาณนาฬิกา ซึ่งนับสัญญาณเป็น Clock 1 เช่น ซีพียู 100 MHz หมายความว่าเกิดสัญญาณนาฬิกา 100 ครั้งต่อวินาที




ซีพียู อินเทล



ซีพียู อินเทล (Intel)อินเทล (Intel Corporation) เป็นบริษัทผู้ผลิตซีพียูที่เก่าแก่และมีพัฒนา มาอย่างต่อเนื่อง นับตั้งแต่ซีพียู 8086,8088 และซีพียูในตระกูล 80×86 เรื่อยมา จนมาถึง Celeron Pentium II และIII ซึ่งได้รับความนิยมมากในสมัยนั้น ก่อนที่ก้าวเข้าสู่ยุค Celeron II Pentium 4 และ Pentium 4Extreme Edition ที่ได้รับการตอบรับอย่างกว้างขวาง เรื่อยมาจนมาถึงยุค Celeron D และ Pentium 4 ภายใต้รหัส Processor Number ใหม่ รวมไปถึง Dual และ Quad-Core อย่าง Pentium D, Pentium Dual-Core, Pentium Extreme Edition, Core Duo, Core 2 Duo, Core 2Quad และ Core 2 Extreme เป็นจุดเริ่มต้นของซีพียูในแบบ Dual & Multi-Core บนเครื่องพีซี รวมทั้งซีพียูบนโครงสร้างแบบใหม่อย่าง Nehalem ที่จะมาพร้อมกับแบรนด์ใหม่ฃื่อว่า Core i7 เป็นต้น

หลังจากที่ Intel ออกCPU สำหรับอุปกรณ์พกพาในชื่อว่า Atom ไปเรียบร้อยแล้วนั้น กระแสก็ออกมาแรงเห็นๆ ทั้งกลุ่มผู้ผลิตมากมายก็เจาะตลาดขาย Netbook กันอย่างล้นหลาม Intel นั้นมีตำนานในการผลิต Microprocessor ตั้งแต่ใช้ในเครื่องคิดเลข และพัฒนาต่อยอดขึ้นมาอย่างไม่หยุดยั้ง ซึ่งทำให้เห็นว่าศักยภาพของการพัฒนาที่ไม่มีที่สิ้นสุดนั้น ทำให้เราได้ใช้เทคโนโลยีอย่างไร้ขีดจำกัด อยู่ที่ว่าเงินในกระเป๋าเราจะมีแค่ไหน ที่นี่เรามาย้อนดูวิวัฒนาการตั้งแต่ ปี 1971 จนถึงปัจจุบันกัน

1971 : 4004 Microprocessor รุ่นแรกของ Intel ใช้งานในเครื่องคิดเลข
1972 : 8008 Microprocessor รุ่นที่พัฒนาต่อมา ใช้งานแบบ "TV typewriter" กับ dump terminal
1974 : 8080 Microprocessor รุ่นนี้เป็นการใช้งานแบบ Personal Computer รุ่นแรก ๆ
1978 : 8086-8088 Microprocessor หรือรุ่น XT ยังเป็นแบบ 8 bit เป็น PC ที่เริ่มใช้งานจริงจัง
1982 : 80286 Microprocessor หรือรุ่น AT 16 bit เริ่มเป็นคอมพิวเตอร์ที่ใช้งานแพร่หลายกันแล้ว
1985 : 80386 Microprocessor เริ่มเป็น CPU 32 bit และสามารถทำงานแบบ Multitasking ได้
1989 : 80486 Microprocessor เข้าสู่ยุคของการใช้จอสี และมีการติดตั้ง Math-Coprocessor ในตัว

รุ่นแรกๆ ทาง Intel ใช้ชื่อรุ่นเป็นรุ่นของ CPU นั้นๆเลยจึงเกิดการเลียนแบบเทคโนโลยีกันขึ้นโดยค่ายอื่นได้ผลิตเทคโนโลยีตามหลังIntelมาเรื่อยๆ ต่อมาทาง Intel ได้ใช้ชื่อ Pentium แทน 80486 เนื่องจากการที่ ชื่อสินค้าที่เป็นตัวเลขกฏหมายไม่ยอมให้จดลิขสิทธิ์ จึงเป็นที่มาของชื่อ Platform ต่างๆ

1993 : Pentium Processor ยุคแรกที่ Intel ใช้ชื่อว่า Pentium
1995 : Pentium Pro Processor สำหรับเครื่อง Server และ Work Station โดยต่อมาได้ผลิตเทคโนโลยี
MMX และทำเป็น Intel MMX
1997 : Pentium II Processor รวมเ Technology ของ Pentium Pro คือ มี cache ระดับ 2 รวมอยู่บน
package เดียวกับ CPU กับ Technology MMX ไว้ด้วยกัน แล้วทำการเปลี่ยนแปลงโครงสร้างภายใน
1998 : Pentium II Xeon(TM) Processor สำหรับ Server และ Work Station
1999 : Celeron(TM) Processor สำหรับตลาดระดับล่างของ Intel ที่ตัดความสามารถบางส่วนออก เพื่อลด
ต้นทุนการผลิต และ สามารถขายได้ในราคาที่ถูกกว่า Pentium II มาก แต่ถึงแม้ Celeron ที่ออกมา
นั้น จะใช้ในงานด้าน เล่นเกมส์ได้ดี แต่กลับงานประเภท office application กลับทำได้แย่กว่า หรือ
พอพอกับ Pentium MMX
1999 : Pentium III Processor เพิ่มชุดคำสั่งที่ช่วยประมวลผลในด้านต่างๆไปใหม่ ในลักษณะของ MMX
1999 : Pentium III Xeon(TM) Processor สำหรับ Server และ Work Station
2001 : Pentium 4 Processor มีเทคโนโลยี HT ทำให้การใช้งานทีละหลายโปรแกรมได้ดีขึ้น
2003 : Pentium M ส่วนใหญ่ใช้ใน mobile technology เนื่องจากใช้กำลังไฟฟ้าน้อย
2005 : Pentium D มีการใช้สถาปัตยกรรมแบบ Multi-core เพิ่มเข้ามาโดยมี2 coreแต่ละ core จะเป็นอิสระ
ต่อกัน
2006 : Intel Core duo นี่แหละครับพระเอกของเรา ต่างกับ Pentium D ตรงที่มีการแชร์ 2 core ด้วยกัน
(dual core)

2006 : Intel Core 2 Duo รองรับชุดคำสั่ง 64 bit และยังประหยัดพลังงานมากขึ้นด้วย
2006 : Intel Core 2 Extreme QX6700 คือ มี 4 core
2006 : Yorkfield คือ 8 core